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Theses:

1) Fluid moment equations for n, T and ~V with neoclassical-type closure

for 〈 ~B ·~∇·↔π〉 provide framework for tokamak plasma transport equations.

2) New approach: a) starts from kinetics not Braginskii; b) solves radial,

parallel, toroidal force balances; & c) uses Er for ambipolar particle fluxes.

3) Next step issue for M3D and NIMROD codes is to explore dissipative

parallel/poloidal flow damping effects to obtain trapped-particle effects

and bootstrap current in neoclassical ‖ Ohm’s law, and poloidal ion flow.

Outline:

Motivation and multi-stage strategy

Faster time scale constraint from ion radial force balance

Simulating ‖ viscous stress, force — for neo ‖ Ohm’s law, poloidal ion flow

Toroidal rotation equation (and Er) from condition for no radial current

Net flux-surface-average density equation — and some consequences

Summary
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Motivation: Develop Xport Equations For Low Collisionality

• Tokamak plasma transport equations for modeling codes (e.g., ONETWO,

TRANSP) are usually obtained from n, ~V , T fluid moment equations with

collisional Braginskii closures, and then ad hoc terms are added for

neoclassical effects on ‖ Ohm’s law (trapped particle effects on η‖, bootstrap current),

fluctuation-induced transport induced by micro-turbulence,

heating, current-drive and flow sources & sinks,

effects of small 3D magnetic field asymmetries, etc.

• But tokamak plasmas are not in a collisional regime! — And we should

develop transport equations that naturally include all these other effects.

• Here, we develop1 self-consistent fluid-moment-based radial transport equa-

tions that include all these effects for nearly axisymmetric single-ion-species

tokamak plasmas using neoclassical-based closures instead of Braginskii’s.

• The procedures (solve for flows in flux surfaces first) and net plasma trans-

port equations are analogous to those developed for stellarator transport.

1J.D. Callen, A.J. Cole, C.C. Hegna, “Toroidal flow and particle flux in tokamak plasmas,” UW-CPTC 08-7, April 2009 (www.cptc.wisc.edu);
Monday afternoon poster S1.00047 at upcoming Sherwood (APS) meeting.
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Multi-Stage Strategy Is Used To Determine Xport Equations

• I. Average the density, momentum and energy equations over fluctuations

(average over toroidal angle ζ) and then flux-surface-average (FSA) them.

• II. Consider sequentially specific components of the momentum equation:

IIA. Radial (∼ µs): Use zeroth order radial force balance enforced by comp. Alfvén
waves to obtain relation between toroidal, poloidal flows & electric field Er, dpi/dr.

IIB. Parallel (∼ ms): Use FSA parallel viscous forces to obtain the parallel neoclassical
Ohm’s law and and ion poloidal flow from ‖ equilibrium momentum, heat flux equations.

IIC. Toroidal (∼ s): Require ambipolar radial particle fluxes (〈 ~J ·~∇ρ〉 = 0) at second
order to obtain FSA toroidal momentum equation, and hence toroidal rotation and Er.

KEY POINT is to solve first for poloidal flows, then toroidal flows on longer time scale.

• III. Substitute net second order ambipolar fluxes back into FSA transport

equations to obtain final comprehensive “radial” transport equations.
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I. Average Moment Equations Over Fluctuations, Then FSA

• First, use a small gyroradius expansion to order various terms.

• Next, “ensemble (ζ-) average” over fluctuations (overbar) & flux-surface-

average (FSA, 〈· · · 〉) density, energy equations [V ′ ≡ dV (ρ)/dρ]:

density:
∂n0

∂t

∣∣∣∣
~x

+
1

V ′
∂

∂ρ
(V ′ Γ0 ) = 〈S̄n〉, Γ0 ≡ 〈 (n0 ~̄V2 + ñ1 ~̃V1) · ~∇ρ〉,

energy:
3

2

∂p0

∂t

∣∣∣∣
~x

+
1

V ′
∂

∂ρ

[
V ′
〈(
~̄q2 +

5

2
( p0~V 2 + p̃1 ~̃V1 )

)
· ~∇ρ

〉]
= 〈Q̄∆〉 −

〈
~̄R1· ~̄V1 + ~̃R1· ~̃V1

〉
+

〈
~̄V2 ·~∇p0 + ~̃V1·~∇p̃1

〉
−
〈↔̄
π : ~∇ ~̄V1

〉
+ 〈S̄E〉.

• Finally, similarly average the momentum (force balance) equation and de-

termine its radial (~∇ρ ·) component and the FSA of its parallel ( ~B0 ·) and

toroidal angular (~eζ · = R~̂eζ ·) components (minus some terms in ‖, t eqns):

radial O{δ0}: mn0
∂~V

∂t
= nq(~E + ~V× ~B)− ~∇p

∑
s

=⇒ ρm
∂~V

∂t
= ~J× ~B − ~∇P ,

parallelO{δ}: mn0
∂〈 ~B0· ~̄V 〉

∂t
= n0q〈 ~B0· ~̄EA〉−〈 ~B0·~∇·

↔̄
π〉+〈 ~B0· ~̄R〉+〈 ~B0· ~̄Sm〉−mn0〈 ~B0· ~̃V ·~∇ ~̃V 〉,

toroidalO{δ2}:
∂

∂t

∣∣∣∣
~x
〈~eζ·mn0 ~̄V 〉= q Γ0 + q〈~eζ·ñ~V× ~̃B〉 − 〈~eζ·~∇·

↔̄
π〉 − 〈~∇·mn(~eζ· ~̃V ) ~̃V 〉+ · · · .
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II. Order δ0, δ1, δ2 Force Balance Equations Have Consequences

• δ0: Zeroth order fluid moment equations yield ideal MHD model.

• IIA. Compressional Alfvén waves ⊥ to ~B0 enforce ~J0× ~B0 = ~∇P0 plus

Ohm’s law ~E0 + ~V× ~B0 = ( ~J0× ~B0 − ~∇pe)/nee yields radial force balance:

0 = ~eρ · [niqi(~E + ~V× ~B)− ~∇pi] =⇒ Ωt ≡ ~V · ~∇ζ = −
(
dΦ

dψp
+

1

niqi

dpi

dψp
− q ~V · ~∇θ

)
=⇒ Vt '

Er

Bp

−
1

niqi

dpi

dr
+
Bt

Bp

Vp , relation between toroidal, pol. flows and Er, dpi/dr.

• Maxwellianization of electron, ion distributions on their collision times of

1/νe, 1/νi cause n, T to be constant over collision lengths λe, λi and hence

on flux surfaces, and flows ~V to become physically meaningful.

• δ1: First order flows are on magnetic flux surfaces (θ, ζ or ∧, ‖ directions):

~̄V1 ≡ ~eθ( ~̄V ·~∇θ)︸ ︷︷ ︸
poloidal

+~eζ( ~̄V ·~∇ζ)︸ ︷︷ ︸
toroidal

= V̄‖ ~B0/B0︸ ︷︷ ︸
parallel

+ ~̄V∧︸︷︷︸
cross

, ~̄Vs∧ ≡
~B0×~∇ψp
B2

0

(
dΦ0

dψp
+

1

ns0qs

dps0

dψp

)
︸ ︷︷ ︸

~E× ~B and diamagnetic

.

• δ2: Radial flows ⊥ to flux surfaces are second order: ~V 2 · ~∇ψp 6= 0

— to calculate, need to determine flows in surface first, as in stellarators.

JDC/Denver CEMM Meeting — May 2, 2009, p 5



IIB. Electron Parallel Force Balance Yields ‖ Ohm’s Law

• Flux surface average of ‖ component of fluctuation-averaged momentum

equation yields first order parallel force balances ( ~B = ~B0, 〈S̄n〉 = 0 here):

msns0
∂〈BV̄s‖〉
∂t

= ns0qs〈 ~B· ~̄EA〉−〈 ~B·~∇·↔̄πs〉+〈 ~B· ~̄Rs〉+〈 ~B· ~̄Sm〉−msns0〈 ~B· ~̃V ·~∇ ~̃V 〉+ns0qs〈 ~B· ~̃V∧× ~̃B⊥〉.

• For times t > 1/νe ∼ 10µs, equilibrium electron ‖ force balance becomes

0 = −nee〈 ~B·~E
A
〉−〈 ~B·~∇·↔πe〉+ 〈 ~B·~Re〉+ 〈 ~B·~Sem〉−mene0〈 ~B· ~̃Ve·~∇ ~̃Ve 〉−ne0e〈 ~B· ~̃Ve× ~̃B⊥〉.

• Using the collisional friction relation ~B0· ~̄Re = − ~̄B0·~Ri ' ne0 eB0J‖/σ‖,

this equation yields the neoclassical parallel Ohm’s law:

〈B0 J‖〉 = σ‖〈 ~B0 · ~̄EA〉︸ ︷︷ ︸
ohmic current

+ (σ‖/ne0e)〈 ~B0 ·~∇·
↔̄
πe‖〉︸ ︷︷ ︸

tp, bootstrap current

+ 〈 ~B0 · ~JCD〉︸ ︷︷ ︸
current drive

+ 〈 ~B0 · ~Jdyn〉︸ ︷︷ ︸
dynamo

.

• Parallel currents are driven by ‖ electron mom. sources and fluctuations:

〈 ~B0 · ~JCD〉 ≡ − (σ‖/ne0e)〈 ~B0 ·
(
~̄Sem −me

~̄VeS̄en

)
〉 — non-inductive current drive,

〈 ~B0 · ~Jdyn〉 = (meσ‖/e)〈 ~B0 · ( ~̃Ve·~∇ ~̃Ve + ~∇·↔πe∧) 〉︸ ︷︷ ︸
‖ Reynolds stress

+ σ‖〈 ~B0 · ~̃Ve× ~̃B⊥ 〉︸ ︷︷ ︸
Maxwell stress

— fluctuation-driven.
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IIB. Poloidal Flow Is Obtained From Plasma ‖ Force Balance

• Summing the parallel force balances over species yields (for S̄n = 0)

mini0
∂〈B0Vi‖〉

∂t
' −〈 ~B0·~∇·

↔̄
πi〉 −min0〈 ~B0 · ~̃Vi ·~∇ ~̃Vi 〉+ 〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~̄Ssm〉.

• The poloidal flow is determined mainly from parallel ion viscous force:

〈 ~B·~∇·↔πi‖〉 ' mini0

[
µi00Uiθ + µi01

−2

5niTi
Qiθ + · · ·

]
〈B2〉, µi00, µi01 ∼

√
ε νi.

• For t > 1/νi ∼ 1 ms, poloidal flow is usually obtained from 〈 ~B·~∇·↔πi‖〉 ' 0:

U0
iθ(ψp) ≡

~V ·~∇θ
~B·~∇θ

' −
µi01

µi00

−2

5niTi
Qiθ '

cp I

qi〈B2〉
dTi0

dψp
=⇒ Vp '

1.17

qiB

dTi0

dr
+O{δ2}.

• Including all the drives in the parallel plasma force balance above yields

Uiθ(ψp) ' U0
iθ(ψp)︸ ︷︷ ︸

neoclassical

−
〈 ~B0 · ( ~̃Vi ·~∇ ~̃Vi + ~∇·↔πi∧) 〉

µi00〈B2
0〉︸ ︷︷ ︸

‖ Reynolds stress

+
〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~Ssm〉

mini0µi00〈B2
0〉︸ ︷︷ ︸

‖ Maxwell stress + flow sources

.

• Having determined the poloidal flow, the toroidal flow is (Ω∗p ≡ I Uiθ/R2):

Ωt ≡ ~V ·~∇ζ = −
(
dΦ

dψp
+

1

niqi

dpi

dψp

)
+ Ω∗p =⇒ Vt '

Er

Bp

−
1

niqiBp

dpi

dr
+

1.17

qiBp

dTi

dr
.
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How Can We Add These ‖ Flow Damping Effects To Codes?

• Braginskii viscous force due to CGL form for parallel stresses is

↔
π‖ ≡ π‖

 ~B ~B

B2
−
↔
I

3

, π‖ ≡ −
3

2
η0

~B ·
↔
W · ~B
B2

,
↔
W ≡ ~∇~V + (~∇~V )T −

2

3

↔
I (~∇·~V ).

• Parallel component of parallel rate of strain has a couple of forms:

~B ·
↔
W · ~B/2 = B( ~B ·~∇)(~V· ~B/B) + [ ~B×( ~B×~V )] ·~κ− (B2/3)~∇·~V

= B2~V ·~∇ lnB + ~B ·~∇×(~V× ~B) + (2B2/3)~∇·~V − ( ~B·~V )(~∇· ~B).

• For ~∇· ~B = 0, ~∇·~V = 0 and ~V⊥ = (1/B2) ~B×~∇f , the last form yields

π‖ = − 3η0 (~V ·~∇ lnB)+∆π‖, where ∆π‖ ≡ − (3η0/B
3)( ~B·~∇f)[ ~B·~∇×( ~B/B)] is small.

• Viscous force for the Braginskii viscous stress is (~κ is curvature vector)

~∇·↔π‖ = π‖ [~κ− ~B( ~B ·~∇ lnB)/B2] + (1/B2) ~B( ~B ·~∇)π‖ − (1/3)~∇π‖

=⇒ ~B ·~∇·↔π‖ = −π‖ ( ~B ·~∇ lnB) + (2/3)( ~B ·~∇)π‖.

• FSA of this neglecting ∆π‖ and using ~V ·~∇ lnB = ( ~B ·~∇ lnB)Uθ(ψp) is

〈 ~B ·~∇·↔π‖〉 = 3η0 〈( ~B ·~∇ lnB)2〉Uθ, with Uθ(ψ) ≡
~V ·~∇θ
~B ·~∇θ

from 0 = ~∇·~V = ( ~B·~∇θ)
∂

∂θ

(
~V ·~∇θ
~B ·~∇θ

)
.
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Adding Parallel Flow Damping Effects To Codes (continued)

• The neolassical parallel viscous force is given by the same form:

〈 ~B ·~∇·↔π‖〉 = mnµ〈B2〉Uθ, which relates to Braginskii via µ ≡ 3η0
〈( ~B ·~∇ lnB)2〉
mn〈B2〉

.

• The neoclassical poloidal flow damping frequency µ for electrons is

µe '
2.3
√
ε νe

(1 + ν
1/2
∗e + ν∗e)(1 + ε3/2ν∗e)

, for collisionality parameter ν∗e ≡
νe

ε3/2ωte
=

Rq

ε3/2λe
.

=⇒ banana regime for ν∗e � 1, plateau for 1� ν∗e � ε−3/2, Braginskii for ν∗e � ε−3/2.

• PROPOSAL: Implement Braginskii operator with neo. viscous damping

frequency µ in M3D and NIMROD2? Some issues for such a proposition:

Best form of π‖ to use? ~V e → − ~J/nee ∼ ∇2 ~B yields 4th order operator in ∂ ~B/∂t eqn.

Poloidal variation of viscous force for ν∗ � 1 not properly captured — but do we care?

Long parallel scale variations should still be relaxed with Braginskii coefficient η0?

Heat flow offsets [Uθ → Uθ − (cpI/qi〈B2〉)(dTi0/dψp)] to damp flows to nonzero values.

Need Zeff effects on µ for realistic tokamak plasma situations.

• Ultimate test of procedure is via Held et al. kinetic-based approach.

2C.R. Sovinec, www.cptc.wisc.edu/sovinec research/notes/e viscosity2.pdf; C.R. Sovinec et al., 2007 Sherwood Conf., Annapolis, MD.
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IIC. Toroidal Torques From Force Balance Give Radial Flows

• A key vector identity for determining radial flows is (~eζ ≡ R2~∇ζ = R~̂eζ)

~eζ · ~V× ~B0 = − ~V ·~eζ× ~B0 = ~V ·~∇ψp — toroidal component of ~V× ~B0 gives radial flow.

• Thus, taking toroidal angular (~eζ ·) component of species force balance and

averaging over fluctuations and a flux surface yields particle flux:

〈n0 ~̄V2 · ~∇ψp〉+ 〈ñ1 ~̃V1 · ~∇ψp〉 average plus fluctuation-induced radial particle flux,

=
1

q

[
−〈~eζ· ~̄R〉+ 〈~eζ·~∇·

↔̄
π〉
]
− n0〈~eζ· ~̄EA〉 collision-induced particle fluxes Γν, Γπ,

−〈~eζ·n0 ~̃V1× ~̃B〉−
1

q
〈~eζ· ~̄Sm〉+

1

q

(
∂

∂t

∣∣∣∣
~x

[mn0〈~eζ· ~̄V1〉] + 〈~∇·mn(~eζ· ~̃V1) ~̃V1〉
)

, fluct., inertia.

• This equation must also be transformed from ~x to ψp coordinates using

〈~eζ·D{mn0 ~̄V1}〉 ' − ρ̇ψp
∂

∂ρ
[mn0〈~eζ· ~̄V1〉]+ 〈~∇·[mn0(~eζ· ~̄V1)~uG]〉+

1

V ′
∂2

∂ρ2
[V ′D̄ηmn0〈~eζ· ~̄V1〉].

• Using ~eζ ≡ R2~∇ζ = I ~B0/B
2
0− ~B0×~∇ψp/B2

0 and ~̄Re ' ne0e( ~J‖/σ‖+ ~J∧/σ⊥):

1

qs
〈~eζ· ~̄Rs〉 =

I

qs

〈
~B0· ~̄Rs

B2
0

〉
−

1

qs

〈
~B0×~∇ψp
B2

0
· ~̄Rs

〉
= −

ne0I

σ‖

〈
J‖B0

B2
0

〉
+
ne0

σ⊥

〈
|~∇ψp|2

B2
0

〉
dP0

dψp
.
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Particle Flux Has Many Contributions I: 7 Ambipolar

• The radial particle flux can be written in terms of its various components:

Γ ≡ 〈~Γ · ~∇ρ〉 ≡ 〈ns0( ~̄V2 − ~uG) ·~∇ρ〉+ 〈ñ1 ~̃V1·~∇ρ〉 − (∂/∂ρ)[V ′ D̄η ns0] ≡ Γaν + Γna + Γapc

= Γcl + ΓPS + Γbp + Γpc + ΓCD + Γdyn + ΓEA︸ ︷︷ ︸
Γaν + Γapc, ambipolar (superscript a)

+ ΓNA
π‖ + Γπ⊥ + Γpol + ΓRey + ΓMax + ΓJxB + Γψ̇p + ΓS︸ ︷︷ ︸

Γna, non-ambipolar (superscript na)

.

• Ambipolar Fluxes3 (ψ′p ≡ dψp/dρ ' BpRa):

Γcl =

〈
~B0×~∇ρ
B2

0
·
~̄Rs⊥

qs

〉
= −

ne0

σ⊥

〈
|~∇ρ|2

B2
0

〉
dP0

dρ
, Dcl '

Te + Ti

σ⊥〈B2
0〉
' νe%2

e, classical,

ΓPS = −
ne0I

2

σ‖ψ′2p

〈
1

B2
0

(
1−

B2
0

〈B2
0〉

)2〉
dP0

dρ
, DPS '

2σ⊥

σ‖
q2Dcl ∼ q2Dcl, Pfirsch-Schlüter,

Γbp =
I

eψ′p〈B2
0〉
〈 ~B0·~∇·

↔̄
πe‖〉, Dbp ' µe%2

ep ∼
q2

ε3/2
Dcl, banana-plateau,

Γpc = −
(
D̄η

dne0

dρ
+ ne0Vpc

)
, Vpc ≡

1

V ′
∂

∂ρ
(V ′D̄η), Dη ≡

ηnc
‖

µ0
∼
Dcl

βe
, paleoclassical,

ΓCD + Γdyn = [(ne0I)/(σ‖ψ
′
p〈B

2
0〉)]〈 ~B0 · ( ~JCD + ~Jdyn)〉, current drive, dynamo effects,

ΓEA = −ne0〈~eζ · ~̄EA〉
(
1− I2〈1/R2〉/〈B2

0〉
)
/ψ′p,

~̄EA× ~Bp/B
2
0 radial pinch.

3K.C. Shaing, S.P. Hirshman, and J.D. Callen, Phys. Fluids 29, 521 (1986); K.C. Shaing, Phys. Fluids 29, 2231 (1986).
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Particle Flux Has Many Contributions II: 8 Non-ambipolar

• Non-ambipolar fluxes (Γ’s here are multiplied by ψ′p ≡ dψp/dρ ' BpRa):

ΓNA
π‖ =

1

qs
〈~eζ·~∇·

↔̄
π

NA

s‖ 〉'
mini0µi t

qi

(
B̃eff

B0

)2

(〈R2Ωt〉 − 〈R2Ω∗〉), Ω∗'
cp+ct

qi

dTi

dψp
, NA ‖ visc.,

Γπ⊥ =
1

qs
〈~eζ·~∇·

↔̄
πs⊥〉 '

1

qi

〈
~eζ·~∇·(

↔̄
π

cl

i⊥+
↔̄
π

nc

i⊥+
↔̄
π

pc

i⊥)

〉
∼ −χt∇2Ωt, χt ∼ (1+q2)νi%

2
i +Dη,

Γpol =
1

qs

∂

∂t

∣∣∣∣
ψp

msns0〈~eζ· ~̄Vs〉 '
1

qi

∂

∂t

∣∣∣∣
ψp

mini0〈R2Ωt〉, ion polarization flow for
∂Ωt

∂t
6= 0,

ΓRey =
1

qsV ′
∂

∂ρ
(V ′Πsρζ), Πsρζ ≡ msns0〈(~∇ρ·~̃Vs)( ~̃Vs·~eζ)〉+〈~∇ρ ·

↔
πs∧·~eζ〉, Reynolds stress,

ΓMax = −〈~eζ · ñ1~V 1× ~̃B〉 '
1

e
〈~eζ · ~̃J× ~̃B〉 =

1

eµ0
〈~eζ · ~̃B ·~∇ ~̃B〉, Maxwell stress,

ΓJxB '
1

e
〈~eζ · ~̃J‖mn× ~̃B⊥mn〉 ' δ(ρ−ρmn)

cAθ

e

ω mini0R

∆′ 2 + (ωτδ)2

B̃2
rmn

B2
0
, FE-induced res. layer,

Γψ̇p =
ρ̇ψp
qs

∂

∂ρ
(msns0〈~eζ · ~̄Vs〉), ψp transients,

ΓsS = −
1

qs
〈~eζ · ~Ssm〉, momentum sources (e.g., NBI, CD).
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IIC. Radial Current Is Obtained By Summing Particle

Fluxes Over Species And Yields Toroidal Torque Balance

• Sum radial species currents to obtain net radial plasma current:

〈 ~J ·~∇ρ〉 ≡
∑
s

qs

(
Γasν + Γaspc + Γnas

)
=
∑
s

qs Γnas — sum of non-ambipolar currents.

• Charge continuity equation on a ψp surface obtained by summing qs times

density equations over species is (ρ̇ψp = 0 and
∑

s qs〈S̄sn〉 = 0 for simplicity)

∂

∂t

∣∣∣∣
ψp

(V ′〈ρq〉)+
1

V ′
∂

∂ρ
(V ′〈 ~J ·~∇ρ〉) = 0

ε0~∇·~E=ρq
=⇒

1

V ′
∂

∂ρ

[
V ′

(
ε0
∂

∂t

∣∣∣∣
ψp

〈~E·~∇ρ〉+ 〈 ~J · ~∇ρ〉
)]

= 0.

• “Vacuum” term ∂〈~E·~∇ρ〉/∂t is ∼ c2
Ap/c

2 ∼ 10−5 � 1 smaller than the neo-

classical polarization flow from ∂Ωt/∂t ∼ ∂〈~E·~∇ρ〉/∂t in 〈 ~J ·~∇ρ〉 ∼ qiΓipol;

thus, this quasineutral charge continuity equation requires 〈 ~J · ~∇ρ〉 = 0.

• Setting 〈 ~J · ~∇ρ〉 to zero yields comprehensive toroidal torque balance equa-

tion for the toroidal angular momentum density Lt ≡ mini0〈R2Ωt〉:

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′Lt)︸ ︷︷ ︸
inertia

' − 〈~eζ·~∇·
↔̄
π

NA

i‖ 〉︸ ︷︷ ︸
NTV from B̃‖

− 〈~eζ·~∇·
↔̄
πi⊥〉︸ ︷︷ ︸

cl, neo, paleo

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress

+ 〈~eζ· ~̃J× ~̃B〉︸ ︷︷ ︸
res.FE, Max

− ρ̇ψp
∂Lt

∂ρ︸ ︷︷ ︸
ψp motion

+ 〈~eζ ·
∑

s
~̄Ssm〉︸ ︷︷ ︸

sources

.
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IIC. Toroidal Rotation Determines Radial Electric Field

Required For Net Ambipolar Radial Particle Flux

• From toroidal rotation 〈Ωt〉 ≡ Lt/(mini0〈R2〉), radial electric field Eρ is:

Eρ ≡ − |~∇ρ |
dΦ0

dρ
' |~∇ρ |

(
〈Ωt〉ψ′p +

1

ni0qi

dpi0

dρ
−
cp

qi

dTi0

dρ

)
, |~∇ρ | varies with θ.

• The resultant Eρ (or Ωt) causes the electron and ion non-ambipolar radial

particle fluxes to become equal (i.e., ambipolar):

Γnae (Eρ) = Zi Γ
na
i (Eρ) =⇒ 〈 ~J · ~∇ρ〉 = 0 =⇒ Ωt (or Eρ) equation.

• Hence, net ambipolar radial particle flux is sum of Γa and Γna(Eρ), which is

easiest to evaluate for electrons since 〈 ~J ·~∇ρ〉 ' Γnai (Eρ) ' 0 (“ion root”):

Γnet
e ≡ Γaeν + Γaepc︸ ︷︷ ︸

intrinsically
ambipolar

+ Γnae (Eρ)︸ ︷︷ ︸
non-ambipolar
Eρ

=⇒ ambipolar

= Γnet
i .

• Dominant electron contributions to Γnae are usually from electron Reynolds

and Maxwell stresses: Γnae (Eρ) ' ΓeRey(Eρ) + ΓeMax(Eρ).
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III. Resultant Transport Equations Can Now Be Specified

• Density (assuming for simplicity the particle source 〈S̄n〉 is ambipolar):

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′n0) + ρ̇ψp
∂n0

∂ρ
+

1

V ′
∂

∂ρ

[
V ′ Γnet

e (Eρ)
]

= 〈S̄n〉, ne0 = ni0, ρ̇ψp ≡
ψ̇p

ψ′p
,

Γnet
e (Eρ) ≡ Γae + Γnae (Eρ) ' Γbp + Γpc︸ ︷︷ ︸

collision-induced

+ ΓeRey(Eρ) + ΓeMax(Eρ)︸ ︷︷ ︸
fluctuations

' Γbp − D̄η

∂n0

∂ρ
− n0Vpc︸ ︷︷ ︸

paleo diffusion, pinch

−
1

e

1

V ′ψ′p

∂

∂ρ
(V ′Πeρζ)︸ ︷︷ ︸

e Reynolds stress

−
1

ψ′p
〈~eζ·ne0 ~̃Ve× ~̃B 〉︸ ︷︷ ︸

e Maxwell stress

.

• Toroidal rotation 〈Ωt〉 ≡ Lt/(mini0〈R2〉) (and radial electric field Eρ):

see bottom of p 12 viewgraph for Lt ≡ mini0〈R2Ωt〉 (and preceding viewgraph for Eρ).

• Energy (similar contributions as density but without ambipolar constraint)

— equations still being worked on.
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This Approach Is Different And Has Some Consequences

• Key differences in this new approach for plasma transport equations:

First solve for flows of electrons, ions in flux surfaces→ ‖ Ohm’s law, poloidal ion flow.

Simultaneously solve transport equations for Ωt (→ Eρ) and ψp, as well as usual n, T .

Effects of micro-turbulence on parallel Ohm’s law (p 6), poloidal ion flow (p 7), particle
fluxes (p 11), mom. flux (p 11) and Ωt (p 12) are all included self-consistently.

Fluctuation-induced particle flux is determined from e Rey, Max stresses, not 〈ñ ~̃V ·~∇ρ〉.

Source effects (e.g., NBI momentum input and ~JCD) are included self-consistently.

Poloidal field transients (ψ̇p 6= 0) and current diffusion time scale effects are included.

Net transport equations follow naturally from extended two-fluid moment equations;
hence they are consistent with M3D, NIMROD code frameworks → basis for FSP?

• Some consequences that result from this new approach are:

Radial electric field is determined self-consistently & forces ambipolar particle transport.

Paleoclassical n, Ωt, T diffusion and pinch effects are included naturally, important?

Poloidal flux transients (ψ̇p 6= 0) induce radial motion of n, Ωt, T which could lead to:

density “pump-out” due to ECH causing ψ̇p < 0?,

Ωt decrease with co-current ECCD due to its momentum input and to ψ̇p < 0?,

Increased “transient transport” of Te when ψ̇p 6= 0?
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Summary

• Comprehensive transport equations for n, Ωt have been derived:

A systematic gyroradius expansion procedure is used.

Fluid moment eqns. are averaged over fluctuations, then flux surface averaged (FSA).

• Radial, parallel and toroidal components of force balance are considered:

δ0: Radial force balance leads to relation between poloidal, toroidal flows & ~E0, ~∇pi0.

δ: Parallel viscous damping determines neoclassical ‖ Ohm’s law and poloidal flow.

δ2: Radial particle fluxes (7 ambipolar, 8 non-ambipolar) from FSA of average ζ torques.

• M3D, NIMROD issue is how to best include parallel viscosity dissipation:

Maybe we can just use Braginskii operator — but use neoclassical viscosity coefficient.

But this needs to be tested by comparisons with Held et al. kinetic-based procedure.

• Requiring an ambipolar radial particle flux (i.e., 〈 ~J ·~∇ρ〉 = 0) etc. yields:

Evolution equation for toroidal angular mom. density Lt ≡ mini0〈R2Ωt〉 =⇒ 〈Ωt〉, Eρ,

Net radial particle flux with collisional (Γν + Γpc) and electron Γnae (Eρ) contributions,

Radial motion (ρ̇ψp∂/∂ρ) in n, Ωt, T equations due to poloidal flux motion (ψ̇p 6=0).
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